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The expansion and evaluation of Fourier coefficients for particular solu-
tions of the generalized Hill equation are obtained by means of the
direct solution of an infinite system of linear algebraic equations; con-
vergence conditions are found. The practical applicability of different
forms of particular solutions and different methods of witing the in-
finite system are considered. A closed expression containing only one un-
known i is derived for the characteristic equation.

1. One of the most prevalent methods of solving the generalized 11111
equat.ion

VO YOUE =0 ¥ = 3 foos@mrten) (L)

m =00

is the representation of its particular solutions y, =y, (1) (k =1, 2)
in the form of expansions in all possible products of the parameters 6.

These solutions are obtained by the method of successive approxima-
tions, applied Jdirectly to Fquation (1.1). lowever, in these uethods the
construction of the successive approximations by the usual means [1-3]
generally do not allow us to investigate the convergence of the series
obtained for y,(1). Below, the method of successive approximations is
applied directly to a system of infinite algebraic equations, to which
Fquation (1.1} can be reduced, to compute the expansions for y,(T); in
connection with this, convergence criteria are Jetermined for the series
obtained for y, (7).

2. let us investigate infinite systems of equations. To compute y, (1)
we must take the following expressions as given,
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Particular solutions of the generalized Hill equation 879

The first is Floquet’s formula [1]
yi (7)== ¥ "Dy (7) (k=1,2) (2.1)
The second is a linear combination of Formulas (2.1)
Y1 (1) = @y (1) cos vT — D, (1) sin v, ¥, (1) = O, (7) sinvt 4 O, (t) cos vt (2.2)

by setting u; = -y, = v 1n (2.1).

In (2.1), (2.2) the periodic functions ®,(7) can be represented in
the form

Qi (1) =Ci -+ D) Alg; —n/2) Aggsin(n+29) T + gl (2.3)
g==—00

or

(o]
Oy (1) = Cy -+ 2] A(g, —n]2) [ckgsin{n + 2¢) T 4 sgqcos (n -+ 2q) T)
q=--00
(pg = Apg COS @, _squAkq sin @4) (2.4)
Here n 1s an integer designating the regions of stability and in-
stability of the solutions of [quation (1.1); the symbol is introduced

Alg; 7,8, 1) = (1 —8qr) (1—8gs)... (1 —8q1)

(6,\v=0when A.:;Ev\) (2.5)

8,,=1whend=wv

In (1.1), (2.3), (2.4), in order to write the Fourier series we shall
assume that

O = Op, E_pm = —En, Ak, —n—q = Aqu ) P, —n—q = 7L — Prq (2’6)

Thus, the unknowns will be the quantities 4, , ¢, , ¢, ., §,,, whose
Y . . . q9 q q q
indices satisfy the inequality

n+2¢>0 2.7)

Combining (2.3) (or (2.4)) with (2.1) (or (2.2)), we can obtain
different expressions for yk(T). To every one of them there corresponds
its own infinite system of algebraic equations*.

* The representation |

: 3 . - <} —i(nto
D (1) = €y - D) A(q —n/2) [b et (RO T . O) gtz )
q=—00
is not investigated: it has no particular advantage,
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Direct substitution into (1.1) shows that when the functions 0,(7) are
determined by (2.3), Equation (1.1) reduces to the system

I,4,= 2 A(m; g, —n—q) bqm(Pm — P + 7/ 2) Ain (2.8)

E A (m; g, —n— 4) [Cqm ((Pm —\Pq) + rngm ((Pm_ ‘Pq + ﬂ/2)] Am
M=--co
tan (@ — Pg) =

2 A(m; g, _n—q) [gqm((pm—\pq-}_n/z)—quqm((pm—lpq)] Am
m=—co (2.9)
C=—0nw Y A(m—n/2)Ang=t ”+"' Sin (@m + Engm)  (2.10)
m=—00

and when the functions 0,(7) are determined by (2.4), to the system

Lysq= 2 A(m; g, —n— q) [2gmSm + BemCm]
e (2.11)
chq = Z A (m; q9, —n— q) [YqmSm -+ %qmCm]

m=—oo

C=—208p on Z A (m; —~n/2) [smcoseN+m—{—cmsmeN+m] (2.12)

m==—00

In (2.8) to (2.12) the index k has been dropped from A, , ¢,., ¢,
q q q’
Ck, the index N stands for

N=pi2n—1+ (=1 (2.13)

L are de-

The coefficients 5qm( x), re Y Iq, S ome qu, Yom Kgm Lg

rived below for every specific case
Systems (2.8) and (2.11) are of like nature. Therefore, the unknowns
A and ¢, s_may be determined to within an arbitrary factor; usually

q .
we assume one of the amplitudes to be

Ay, =14 (2.14)

The index Py 1s conveniently chosen from the condition ’IP | < |IP|
0

f < !L |, if Py # p. In the majority of cases these conditions

are sat1sf1ed by pp =0 if n # 0 and by py =1 if n =0,
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Condition (2.14) selects two equations each from the systems (2.8) to
(2.10) and (2.11) to (2.12), corresponding to g = p,. They play the role
of characteristic equations and serve to determine p and @.

In the process of computing A , ¢ (or c¢_, s ) we should consider that
the characteristic equations have been eliminated from systems (2.8) to

(2.10) and (2.11) to (2.12), i.e. q#py, 7# -1 - p,.

The terms of the sums with indiceg m = p;, and m = - n - p, entering
on the right-hand side of (2.8), (2.11), must be isolated, since they
will be nonhomogeneous terms of the equationms.

System (2.8) will be regular if

> Cm(q)m_ -{‘ﬂlz) R
1> 3 A(m; po, g —n—po, —n—q)| = I:q (2.15)

m=—00

System (2.11) will be regular if

) iam|+|Bm[
1> 3 A(m; po gy —n—pp —n—9) —L T
Mm=—co 2.16
I~ 3 A ol gl )
> R Alpng —n—po —n—q) —E

If conditions (2.15), (2.16) are fulfilled, every expansion for A
and ¢, Sg obtained by solving (2.8) and, respectively, (2.11) by the
method of successive approximations, will converge absolutely [4].

Inequalities (2.15) and (2.16) are not equally strong; for example,
in the case @, = 0, m # 0, it can be shown that (2.15) is weaker than
(2.16).

Inequalities (2.15) and (2.16) give the absolute criteria for con-
vergence. It can be proved that if (2.15) and (2.16) are fulfilled
simultaneously then the correct convergence criterion is the weaker one

of (2.15), (2.16).

Below (see (5.13)), we shall find the necessary convergence criteria
from the solutions of systems (2.8), (2.9) for the case of 8 decreasing
by a geometrical progression of growth [m].

Comparing (5.13) with (2.15) we can convince ourselves that these
conditions are not greatly different from each other.

The suggested methods for computing y,(7) are related to Vhittaker’s
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method (see [1, p.253]). The solution (2.2), (2.4) occupies a special
place in them. It includes the closed characteristic equation and allows
an independent computation of the characteristic number v and of the
Fourier coefficient Chq' Skq'

3. Let us study the solution (2.2), (2.4). In this case we obtain the
system of equations (2.11) to (2.12) whose coefficients equal

%gm == Rgm = §qm (70/ 2), Bgm = — Tem = Lem (V) (3.1)

— hgm SIN (T + Expm — ENq)]

o
A(pig,m, —n/2 2 . ‘
—A(m; —nj2) 3 AELMIMDR LM G g s enoye o)+
P - (“
p=--00

+ Apphom SIN(T - Exgm — Enig) = Bpombpg SID (T -+ €y - BN L — BN ) —
~ Bo—phpmSin (& + &p—q + ENgm - Enp)]

0 G 1, .
J1‘7 - (n ‘Jf" ZQ)Z - Or} + v? ‘f’ xqq: }"qm == 6}1, aN Ntm R (3.2)

By — v*
; - 2q)? .
Ly = My — vz 8200 /2)
i
In solution (2.2) only one amplitude, namely A, , can be assigned

arbitrarily. Therefore, by selecting AIP according® to (2.14), the
amplitude Azp should be computed from the equality
0

2v(n -+ 2q) AggSin (& - @gq) = MAjgcos(r | @) - - (3.3)
— D) A(m; g —n/2) Aty €08 (E 0 Guu ol Euig)
Mz — O
- lqm cos (3; 4 @um o BN oo By é—»;“

arising from (1.1).

The phase x in Equalities (3.2), (3.3) is arbitrary. The solutions of
system (2.11), (3.1), (3.2) can be found by means of successively
eliminating the unknowns Cy Sq from Tquations (2.11). As a result we

obtain the expression
{co} ) {o0) | ; o) |
-"1\ Cy = A (qv I’O) (T’lpn Spe . Hap, ‘1’.‘)
o) . (o0, [T A .
I‘Q( Sy Ag, po) (%, Spy 1 Bap Cp) (3.4
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whose coefficients are determined by the recurrence formulas

A(pei 9)
(k1) (k) k (k) k) (k) (k)
Zgm = Ugm -+ L (k) fa apy, ®pym +quk'rpk ]
Lt k) (P/c- ‘/) Ky K w ., *®
= Bgm + L [ qp Bpk +qu/. ka |
”k
) Ap. g .
k+1 k) k k) k) (k)
Tq£n+) Tom' -+ A [ izpk Epym + ”akapkm] (3.5}
(73
G _ o (0 (PA' ‘?) R * o (k)
Xqm =~ == + —a e %ppm + Yapy Bppm ']
pk
{k+1) k) . (k+1) (k) 0 __
Lq =Ly" — A(q; Prs P2y -+ s Px) [%aq © tqq 1, Lg = Lqg

ctain = Lom (71/2) + Cq, —nm (/ 2), Tam = — Lgm (0) — &g, —n-m (0)
e = o (0) — Ly onm (0)y %o = L (/) 2) — Lq. —nm () 2)

In (3.4), (3.5) the indices p, # p; if k # j; the set p, coincides
with the set of numbers N+ 1 -n, N+ 2 - n,

The sequence of changes in p,, depending on the index %, is arbitrary
and is determined by the order in which ¢ , s are eliminated from system
(2.11): ¢, , s, are eliminated first, then ¢, s_, etc.

Pyt Py Pa™ Py

In practice it is more convenient to start with the elimination of

the Cqr Sq with the largest amplitudes.

In Equalities (2.11) and (3.4), to the number ¢ = p; there correspond
two equations which are the last in the sequential elimination of ¢ Sqr
These equations play the role of characteristic equatious.

From (3.4) it is evident that when q = p; the right-hand sides of
(3.4) vanishes. If Ap # 0, the quantities Cp » Sp camot vanish
0 0
simultaneously (see (2.4)). Therefore, phase ¢, 1is arbitrary*, and the
0

characteristic equation has the form

23

L =L, — x Aldps Po) (A) [“mgf/l) e + ﬁmg;:'rp;.m =0 (3.0,

pr=N+1—n pk

* ¢1P0 is chosen arbitrarily; phase ¢2p0 (as also A2Po) should be com-

puted from (3.3).
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There remains only one unknown v. Therefore, the solution of (3.6)
can be sought for independently of the calculation of ¢ , s . As an
example, below, approximate expressions for the roots o (3?6) are de-
rived for the case

|V, —m|>6. imj=0,1, ...

In the zeroth approximation

Y

8y, on0®
_ B Lo _ 3.7
Vo = N+ 2po (90 + (n--2pn) (n -+ 2p0— 2V 8 > e

In the first approximation

0,%
2::‘\72-——-——_—-"“"‘—"—“, n"—"—’i, '::0
VT AR Vo) b 3.8)
V2 __.:v02,,_ 6}2 nzz, p0:O

v04 Vé;(i“¥ pﬁ%)’

It is known [1} that the Hill determinant (the determinant of system
(2.11)) has an infinite number of roots; at the same time (1.1) cannot
have more than two characteristic exponents. Formula (3.7) shows that
whether one or the other of the roots of the Hill determinant appears as
a characteristic exponent or not, depends upon the method of solving
(1. 1),

In particular, for real v and Y(T) the characteristic numbers Hy,
(k =1, 2) of solutions (2.1), are ejther real or pure imaginary. The
proof of this assertion is simple. For real T and Y(T) both yl(T) and
¥1*(7) will be solutions of (1.1). Therefore, u, and u,* will be the
characteristic exponents of Tquation {1.1) simultaneously, and either
Hp* = Mg or iyt T py T - g

The application of Equation (3.6) requires the evaluation of ; m(x)
from the complicated Expression (3.2). In those cases where the series
for Y(1) in (1.1).contains a finite number of terms, Expression (3.2)
simplifies. Otherwise, the sums in (3.2) can be represented by use of
known trigonometrical series (see, for example, [5, {1.445}]) in the
form of definite integrals the evaluation of which may be simpler than
direct summation.

1f, however, simple expressions cannot be found for the coefficients
of (3.2), the application of expansions (3.4) to (3.5) for computing ¢
sq hecomes inappropriate.

q

In this case, by computing v from the characteristic %quation (3.6),
other solutions which lead to coefficients simpler than (3.1), (3.2) can
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be used instead of (2.2), (2.4) for determining yk(T)'

4. As such a solution let us study (2.1), (2.4). In this case the co-
efficients « can be represented as combinations of two

qm’ Bqm’ an' Kqu
functions

B = B (05— 1/ 2) [E g () 2) + 6y (7 2)]
Bom = A (M3 — 7/ 2) [— Eppy (0) — Sy (0)]
Tom= A (ms —n/2)[E, (0) =5, (O] (4.4)
K = A (5 —1/2) [E gy (] 2) — 0, (1 2)]
Eqm (z) = (Mq + qu) [Oq_msin (x+ €om) — kqmsin (*+eyp,— 8N+m)] —
—2p (n+29) [Oq_mcos (z+ eq_m) — Lqmcos (=teyy,— eNtm))

Sm (&) =0, 10, sin(zte . —e  ,)— Apsin(@+ey  —enim— 8Ny o] —
— qu [Bq_m sin (x 4 pem — 28N+q) — A,qm sin (z —EN4g— entm)] (4.2)

eN-{- 0N—{—-m
My=(n+200—0— k. =8, oy g i

Ly=M2 4 4pt(n 29 + 20 (M 40, c0S (e 00— 28y )] — 0.2,

In order to find solutions of Equations (2.11), (4.1), (4.2), let us
write system (2.11) in the form*

o0
a,=g,+ > Am; o, V28,

m==—39N (4.3)
8y, = chq, Lmzm. om = A (1 q) [uqm—uq, R
a2q+1 = Lq sqv Lm z?q. om1 = A (m; q) [Tqm + Tq. -——n—-m]
gq = aozqo + alqu, Lmz2q+1’ om = A (mr q) [qu - Bq, _n_m]

Lm22q+1. am+1 = A(m; g) [aqm + 2, —n—ml

To compute a, by means of (4.3), different variations of the method
of successive approximations can be suggested. When the regularity con-
ditions (2.16) are fulfilled, they all lead to one and the same value of
aq (see [4]). However, each of them turns out to be the most suitable
only for a specific rule of varjation of the numbers zqm with increasing
indices q, m.

* Here for brevity we assume Py = 0.



686 G.F. Filimonov

As an example let us investigate two elementary cases. Let Gm be a
slowly varying sequence of numbers. In this case : n €quals @ __mLm"1 in
magnitude; the quantity aq is appropriately sought for in the form

[oe]

k
Zom = tU g, a = D\ aul (4.4)
k=0

Substituting (4.4) into (4.3) and equating the coefficients of like
powers of t, we find

o [oo]
G =80+ A0 D A 0, DU, D Apn 0, )U,, ...
py=—2N py=—2N
[oe]
DN A0 DU, e (4.5)
Py =—2N

Formulas (4.4), (4.5) give the final expression a_ if we set t = 1
for the auxiliary quantity t which occurs in them.

Let us now assume that in magnitude Gm'v x|m| ('m’ =0, 1, 2, ...

In this case 2 n m,x|Q - M| in magnitude, and ¢ is appropriately

sought for in the form*
o
- Q=M _4lQ _ k-t .
“ym t I/rl‘m' ,‘.’l’ == ll le, a’I E S bqkl{ Q1 (4.6)
k=0

Substituting (4.6) into (4.5) and equating the coefficients of t, we
find

2Q+1
hq/-‘ == ankn gt Z A (m; 0, 1)Vq‘mbm1f = (4.7)
m==0
1QD(—Q) o
7‘ . F
+ }_ O ham—qn( oyt 2 6r,k~'3[1\1—~QD(Q)]}A(m‘ 0, )V b,
m—.~ 2N m=2Q-+1D(Q)

1(0Q ()

Q) Q>0

Lo <)

Eyualities (4.7) represents a set of recurrence relations which allow

us to cempute the quantities bqk by their "lowest" approximations bmr

* The numbers (¢ and M are computed by means of Formulas (2.10) in which
q and m, respectively, should be substituted for n.
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¢(r < k) and by the approximations of the same order of the "previous”
amplitudes bmk{lm1 < lqly. 1t is not difficult to apply (4.7) in practice.
Equalities (4.6), (4.7) give the final expression for aq if we set t = 1

in them.

It is not difficult to see that if condition (2.14) is fulfilled the
coefficients : n depend on Gm, €0 W and g_on Gm, € B Py If uis
computed by use of Egquation (3.6), then expansions (4.4) to (4.7) will
depend only on the unknown ¢,. The characteristic equation of system
(2.11), (4.1), (4.2) can be presented in the form of two equations

Bg — n® -} p? =0_cos (2qq-+&,) + 2hoo $in® (o - £y) —

00
— 2 A 0, —n (2, —n)A [0 cos(9,, — Qo &,) — kg, COS(Pr—Po-en 4 e

M= 0O

(4.8)
np - — Oﬂ sin (2qu -+ &,) -1 Ao 5in 2 (o + &) —

fee]
— ) A0, — n 2, —n) A0, Sin (@, — Qot £, — Koy, Sin (@, —QoHEy n—en)]
Mz OO
By substituting here (4.4) to (4.7) we find €or So» and then we com-
pute yk(’r) R
%. Let us study the soclutions (2.1), (2.3) and (2.2), (2.3) in order

to find approximate expressions for A_ and ¢_. Here, Equation (1.1} can
be transformed to the system (2.8) to (2.10) whose coefficients equal

;"m £y =A(m; -—n!2) [O.,[, e (e b 81,1—~,,) - kr,'m sin (v 1 ENpm ™ BN 'I)l

I, = (n 4290 - 0o—p2 - h [ --cos2(q, ey, M40, 1, cos G+ e, )

e 8'{»}1119:'\74—/7 2” (n -+ 2(/) -+ §_ n—q, q(2(pq) -
}“qm . 6,1. AN T, L pe Ty = I,{ {5.1)

in the case of solution (2.1), (2.3). For solution (2.2), (2.3)
T, 0. I =1 (5.2)

I 7]

and Lq, (x) are determined by means of (3.2),

Cqn

The coefficients of system (2.8) to (2.10) depend on the phases Py
Therefore it is inconvenient to make use of Expression (2.3) for an
accurate computation of ¥, (7). However, for real values of the phases
D when it is possible to dominate by unity all the trigonometrical
functions occurring in (2.8) to (2.10), Equations (2.8) to (2.10) allow
us to obtain approximate expressions for Aq and Py

f.et us investigate the case for real Gm, € In this case, the phases
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Pp of solution (2.1), (2.3) will be real in the instability regions, and
the phases P of solution (2.2), (2.3) in the stability regions. There-
fore, to evaluate relations for the stability of the solution of (1.1)
we must use (2.2), (2.3), and for imstability, (2.1), (2.3).

To a large extent the nature of the variations of A with the increase
of Iql, depends on the coefficients Om. Therefore, below, we study the
approximate expressions for Aq in two special cases.

If Bm, ’m' =1, 2, ..., forms a slowly varying sequence of numbers,
then A is conveniently sought for in a form analogous to (4.4). Let us
introduce the notation

Sy = A0 @) (80 + Ly (5 0)] (L (@ — @, 70/ 2) —

=&y g @ — @/ 2)] (5.3)
Let us set*
oo
= W e Al = Ao D) agt* (5.4)
k=0

By using (2.8) we find

(e o] [ee]
=8, U+ AKO0) D A OU, D A OU,, ...
py=—N Py=—N
oo
°, .
D AP O, 5 Ui, (5.5)
= —N

"y

For Aq we obtain

SO
u(,A,,|<|Au|[|zqo|+-—1‘_S
(5.6;
00
S > 2 A(mn; 0, g, —n, —n—gq

m=—0C

) | C(,m(wm—]¢q+ﬂ/2)'

m

0
0 N - -
st )>' 21 “qm1n0

m=—N

The quantity S is the majorant of the right-hand sides of (2.15).

Inequality (5.6) takes a simple form if we assume

* Let us recall that in solution (2.2), (2.3) the arbitrary Alo' Do

i 2
Agq.. Pgg Must be calculated by using (3.3).
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o @ — 9+ 7/ 2) =Ly o (— O — @y + 7/ 2) | <t (5.7

The interval of values of the quantity ¢, within the limits of which
inequalities (5.6) have meaning, is determined with the aid of (2.15).

If Gm, !ml =1, 2, ., forms a geometric progression, then Aq is con-
veniently sought for in a form analogous to (4.6).

Let us set
o0
e — k
Ty = s mIqu' ]qu = Ay E bqu +lal (5.8)
k=0

Substituting (5.8) into (2.8) and equating the coefficients of powers
of x, we find

q
bop = 6I€Q‘Vq0 + Z A (m: 0) pqmbmk +

m=g
qD{—a)—1
. Nt '
+ { Z 6& fe-+-2[m-—qD(—q)} + }_‘ ér. k-—-2[m~qD(q)]} qubmr (5.9)
Y omee—N m=qD(q)-+
1f
‘ éqm (q}m - (pq ) 2‘) - gq. Nl ("" q‘m - q)q ..'L_ ) 2) ‘ < r‘th‘mi (510)

then Equalities (5.9) allow us to derive the approximate expression

t ; t N
b 1 )i -wﬁmx — ] 5.4
* QG ( +§11815ﬂq‘ K Izsigan, k +§1q2 ) ( )
With known accuracy Im in (5.11) can be replaced by I”l =~ 4m2; here,
as q —~ '@, the right-hand side of (5.11) is transformed to a known in-
finite product, and
_ sinh (T YL/ 2)

40 ICt ’:_IT/_iT (5.12)

b
The range of variation of ¢t and x, within the limits of which inegual-
jties (5.11), (5.12) have meaning, can be determined by substituting
(5.10) into (2.15).

By analysing the subseguent terms of the series in (5.8) for the case
of (5.10), we can find the necessary convergence criterion for the series
in (5.8)

fee]
N lx x -

< (5:13)
- T mil

i
i
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The expansions (5.8), (5.9) derived here for the amplitudes A are
similar to the series derived in [1,2] for the solution (2.1), (2.3).

It is not difficult to convince ourselves that (5.8), (5.9) are their
generalizations. To see this, (5.1) should be substituted into (5.9) and
Im_1 should be expanded into a series of products of the numbers Gm.
Then (5.9) will coincide with the corresponding results of [1,2]. It is
necessary, however, to note that when computing (2.1), (2.3) in the
stability regions corresponding to n > 2, such an expansion becomes in-
valid since it leads to a violation of condition (2.15). Therefore, the
expansion of yk(T) for n = 3, derived in [2], trivially applies only in
the instability regions.

Let us study the approximate solutions of Bquation (2.9) for the case
of (5.10) when all the products of the form A ...Aer...GE can be re-
garded as quantities of the pth order of smallness if |q[ + ...+ ’r! +

I(I)I + ...t ,g' = p.

In accordance with this classification the numerators of the right-
hand sides of (2.9) contain terms of |q| + 2p, n+ g+ 2p (p =0, 1,
orders of smallness.

The quantities @ _occurring in (2.9) are arbitrary. In particular, we
can assume ¢ = 0. However, the quantities ¢ can also be chosen such
that the right-hand sides of (2.9) have small magnitudes of the first or
more orders of smallness. In this case Wq will approximate the values of
phases Py

To derive the equations defining y let us equate to zero the sum of
all terms of the gth order of smallness occurring in the numerators of
the right-hand sides of (2.9). Then we obtain:

for the instability regions (for solution (2.1), (2.3))

q
Po - Qo Z Alm; g, —nf2) A0 sin(@y—4 e, )0 (5.19)

==

for the stability regions (for solution (2.2), (2.3))

\ M M
ZLA(r;q'A“”/Z)kn—PEE ;;I%;).4#%~rﬁn(mr~—wq+-g_ﬂ)r 5.13)
\! . eq—ﬂjop—m - ; -
— S A(pim.og,—n/2YA(m,y, —n[2) " n4-2p Ay, sin (@, — '¢q+ Byt Ep—g) Y
mr <m < p <y, gp<m<0 (Vo = Q)

If in (5.14), (5.15) we replace P by Y then (5.141), (5.13) will-also
give the desired solutions for wq. Cquations (5.14), (5.15) have the
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character of recurrence relations. They permit a simple series solution.

6. Let us study the solutions of the ordinary Hill equation, when
€, = 0. System (2.9), corresponding to (2.2), (2.3), when g, = 0 has the
solutions

?,=0 Q,=7/2 (6.1)

Therefore, expansions (5.4), (5.5) and (5.8), (5.9), applied to solu-
tion (2.2), (2.3), in the case of the ordinary Hill equation contain only
the unknown v and mdy be regarded as final. (According to (3.3) phase
P24 =0, w/2 if ¢lq = w/2, 0, respectively.)

To compute the periodic (¢ = 0) solutions of the ordinary Hill equa-
tion we can also use Expressions (2.1), (2.3). In this case (6.1) will
also satisfy system (2.9) and, (5.4) to (5.5), (5.8) to (5.9) will give
the final expressions for amplitudes A . The advantage of the latter
method of computing yk(T) is that the coefficients (5.1) are considerably
simpler than the coefficients (3.2).

7. Let us investigate the Mathieli equation. In this case

e =0, 0, =00 +0d . (T.1)

m mo

The constant C is conveniently taken inside the summation sign in
(2.3) with the help of the inequalities

C=90 x4 _y. S oNP_y =2 (7 2)

The system (2.8), (2.9) with coefficients

2 2
—“("TJF—”) T = (n- 20 —8—pt (7.3)

q

: (I) = 016

Sqm sine, r

fe- gl 7

is obtained for A , o .
q q
The Mathieu equation is a special case of the ordinary Hill equation.
However, the methods set forth in Section 6 for computing yk(T) are not
always convenient for solving the Mathieu equation since they lead to
very crude estimates of the Fourier coefficients of yk(T) and of the
convergence conditions.

Therefor e, to solve the Mathieu equation it is appropriate to use the
Whittaker series introduced in [1, p.256] which converges faster than
(5.4) does.

In this case the application of infinite equations allows us to derive
an expression for the general term of the Whittaker series, to find a
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quantitative estimate for their regions of convergence, and, to obtain
convenient estimates for the quantities Aq, ¢q.
By assuming

6, cos (%.signq— Qo) O1cos (q)2~signq — Py.signg )
Aqr-:bqo—}-A(q;O)aq 7 7 ..

1-8igng 2-8ign q

6, cos (P, ~—@y—1.signq ) 7.4
. Iq o

we find for aq the system of equations

2 ;e .
6,* cos ((Pq Pty .sign q)

a =1, 8, =a, 1.4 +za .\ .cigngr z = (7.5)
q q—1-8ign q q g+1-signg q 1q1q+4_“gnq

System (7.5) decomposes naturally into two independent parts, corre-
sponding to ¢ > 0 and ¢ < 0. By virtue of (2.8), only the system corre-
sponding to ¢ > 0 turas out to be infinite. We shall find its solution.

If in (7.5) we set ¢ > 0, then we obtain an irregular system of equa-
tions to which the general methods stated in [4] do not apply. Neverthe-
less, the solution of (7.5) for ¢ > 0 can be obtained with the aid of
expansions of type (5.4)

oo
5, = th, a, = 2 “(,Ic‘k (7.6)
[/
Substituting (7.6) into (7.5) we find
q D1 PRt
= O AR 0) DU ST U, (7.7}
pi=1 pa=1 P =1

It is not difficult to show that series (7.6), (7.7) converge abso-
lutely if

0

NEA (7.8)

P=1

1>

Here for aq we obtain
KD }
a1 (1 = 8), sl | (7.9)
[ i

Expansions (7.6), (7.7) represent a generalization of the Whittaker
series. Inequality (7.8) gives the sufficient condition for their abso-
lute convergence.

Let us consider the approximate solutions of system-(2.9). By repeating
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the derivation of Equations (5.14) for wq, we get

26 (n i 29)
tan Iq .

‘l‘,, wi{"l,vﬁigll q -+ Yo == o {(7.40)
From (7.10) it is obvious that Pgr1 = P is a small quantity tending

to zero as g — ®. Therefore, in contrast to the general case (see Section

5), Expressions (2.1), (2.3) are suitable for the computation of both

the unstable and the stable solutions of the Mathieu equation. From (7.9)

we can also derive that

1l (@, — qo) | = Vol u{In | g (n )
when ¢ ~ ® and y has pure imaginary values.

8. One of the basic aims of the present paper is to obtain for the
solutions of the generalized Hill equation simple expansions which allow
direct practical application. Such desired expansions were obtained in
Sections 3, 4, 6, depending only on the characteristic number p,

If (3.8) allows a simple computation of v, the use of series (3.4),
(4.4) to (4.7), (5.4), (5.8) presents no difficulty.

1f, however, it is not possible to solve (3.6) by simple means, then
we must use other methods to compute ¥p(D). In particular, the method -
suggested in (1] and applied in [2] - of the formal expansion of all
quantities in terms of products of the numbers Gn, can be useful, In this
case conditions (2.15), (2.16), (5.13) and inequalities (5.6), (5.11)
make it possible to find the accuracy of the method of successive approxi-
mations., When solving a truncated system of equations, inequalities (5.6),
(5.11), (7.9) allow us to estimate the errors which arise from the
trucnation of the infinite system.

In conclusion let us note that the results of Sections 4 to 7 are
given for Py = 0 (see (2.14)). Therefore, we must be cautious when apply-
ing them to the case n = 0.

The author thanks the review editor X.G. Valeev for much help and
valuable advice,
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